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Abstract
We analyse a criterion, introduced by Joshi and Lafortune, for the
integrability of cellular automata obtained from discrete systems through the
ultradiscretization procedure. We show that while this criterion can be used in
order to single out integrable ultradiscrete systems, there do exist cases where
the system is nonintegrable and still the criterion is satisfied. Conversely we
show that for ultradiscrete systems that are derived from linearizable mappings
the criterion is not satisfied. We investigate this phenomenon further in the case
of a mapping which includes a linearizable subcase and show how the violation
of the criterion comes to be. Finally, we comment on the growth properties of
ultradiscrete systems.

PACS numbers: 02.30.Ik, 02.30.Ks

1. Introduction

Integrability detectors are important because integrable systems are both interesting and rare.
Of course, when one uses a constructive method for the derivation of a new integrable system,
the use of an integrability detector is not an imperative. At best, in this case, the implementation
of an integrability test can be used in order to gauge the efficiency of the detector itself.
However, these ‘constructive’ cases are not the most challenging ones. What is far more
interesting is the situation when one derives a model, usually based on physical arguments,
and wonders about its possible integrable character.

In the domain of differential equations the Painlevé property is the indisputable
integrability detector [1]. It is based on the requirement that the solutions of a given equation be
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devoid of multivaluedness-inducing singularities. In this sense, the Painlevé property becomes
almost tautologically identified to integrability (since the absence of multivaluedness allows
one to integrate the equations in the Poincaré sense). Efficient algorithms for the investigation
of the Painlevé property in differential equations have been proposed already by the founders
of the approach (Kowalevskaya, Painlevé, Gambier, . . . ). More recently Ablowitz, Ramani
and Segur (ARS) [2] have introduced their algorithm which has played a major role in the
development of the modern era of integrability studies. (Still one has to keep in mind that,
efficient though it is, the ARS algorithm is not perfect and can only detect a certain type of
multivaluedness, as stressed by Kruskal [3].) Obviously, an integrability detector is related
to a specific type of integrability, of which there exist several kinds, the term integrability
being conveniently rather vague. The Painlevé property is thus characteristic of systems the
integration of which proceeds through spectral methods. Typical examples are the Painlevé
equations, to say nothing of the slew of integrable evolution equations discovered over the
past quarter century. However, there exists a large class of systems the integrability of which
is obtained in a simpler way. They are the linearizable, or c-integrable in the Calogero [4]
terminology, systems. As we have shown in [5], their integrable character is not associated
with the Painlevé property. (As a matter of fact, no linearizability detector appears to exist to
date, to the authors knowledge.)

Discrete systems pose a greater challenge. A first integrability detector was proposed
based on the observation that mappings integrable through spectral methods have confined
singularities [6], i.e., any singularity spontaneously appearing due to the choice of initial
conditions disappears after a few iteration steps. While singularity confinement has been
instrumental in discovering a host of integrable discrete systems, it turned out that the
confinement property was not sufficient in order to guarantee integrability. We shall not go into
detailed explanations here. It suffices to say that for discrete systems to be integrable, a proper
local singularity structure is not enough. The growth properties of the solutions at infinity
enter into play and the best way to qualify this is through the Nevanlinna approach [7]. To put
it in a nutshell, for a discrete system to be integrable the requirement is that the Nevanlinna
order of the solution be finite (which guarantees not too fast a growth) and moreover that
its singularities be confined. As in the continuous case, linearizable discrete systems are a
class of their own. As we have shown in [5] linearizability does not require confined
singularities although the solutions must still have finite Nevanlinna order. An algorithm
which calculates the growth was proposed by Hietarinta and Viallet [8] and is commonly
referred to as the algebraic entropy technique.

It is thus natural at this point to ask how the integrability-related properties of discrete
systems carry over to cellular automata obtained from discrete systems following the
ultradiscretization procedure [9]. We recall here that the latter consists into introducing
an ansatz x = eX/δ (where x is the solution of the discrete system, which should obviously
be positive definite) and obtain for X an equation by going to the limit δ → 0. The essential
identity that allows to us derive easily the ultradiscrete forms is limδ→0 δ log(eA/δ + eB/δ) =
max(A,B). The ultradiscretization procedure preserves any integrable character of the initial
system. One would thus naturally expect the ultradiscrete analogue of integrability-related
properties, like the singularity confinement of the discrete case, to exist. This would allow one
to formulate ultradiscrete integrability conjectures and propose integrability detectors. This
question has been already addressed by Joshi and Lafortune [10] who proposed a singularity
analysis approach which is perceived as the ultradiscrete equivalent of singularity confinement.
In this paper, we shall critically examine this approach and show that the situation is more
complicated than what one would initially expect. In particular, we shall show that, just as in
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the discrete case, there exist integrable ultradiscrete systems with unconfined singularities but
also nonintegrable systems with confined singularities.

2. Singularities and their confinement

Before proceeding to the analysis of ultradiscrete systems it is interesting to spend a few lines
on their discrete counterparts focusing on the notion of singularity. Given a mapping of the
form xn+1 = f (xn, xn−1) we are in the presence of a singularity whenever ∂xn+1

∂xn−1
= 0, i.e., xn+1

‘loses’ its dependence on xn−1. When this is due to a particular choice of initial conditions
we are referring to this singularity as a movable one. Movable singularities may be bad, for
integrability, because they may lead, after a few mapping iterations, to an indeterminate form
(0/0,∞ − ∞, . . .) or propagate indefinitely. In the former case, provided we can lift the
indeterminacy while recovering the lost degree of freedom (using an argument of continuity
with respect to the initial conditions), we are talking about a confined singularity. As explained
in the introduction, mappings which are integrable through spectral methods have confined
singularities. The typical singularity pattern in this case is the following: the solution is regular
for all values of the index n up to some value ns , then a singularity appears and propagates
up to nc whereupon it disappears and the solution is again regular for all values of the index
larger than nc. In some cases we are in the presence of the reciprocal situation. The solution
is singular for all values of n < ns , becomes regular between ns and nc and is again singular
for n > nc. This singularity is called weakly confined by Takenawa [11] and is considered to
be compatible with integrability. At the limit where there exists no interval where the solution
may be regular, and the solution is singular throughout, we are in the presence of what we call
a ‘fixed’ singularity (which again does not hinder integrability).

How can these notions be transposed to the ultradiscrete setting? This is a question that
has been addressed by Joshi and Lafortune [10] who proposed an analogue to the singularity
confinement property for ultradiscrete mappings. In the ultradiscrete systems, the nonlinearity
is mediated by terms involving the max operator. Typically, one is in the presence of terms
like max(Xn, 0). When, depending on the initial conditions, the value of Xn crosses zero, the
result of the max(Xn, 0) operation becomes discontinuous: when X is slightly smaller than 0
the result is zero, while for X > 0 the result is X. It is this discontinuity that plays the role of the
singularity. Typically, if we put X = ε, a term µ = max(ε, 0) propagates with the iterations of
the mapping and perpetuates the discontinuity unless by some coincidence it disappears. This
disappearance is the equivalent of the singularity confinement for ultradiscrete systems. Joshi
and Lafortune [10] have introduced an algorithmic method for testing the confinement property
for ultradiscrete systems, linked it to integrability and reproduced results on ultradiscrete
Painlevé equations by suitably deautonomising ultradiscrete mappings.

Before proceeding to a critical analysis of the method let us give an illustrative example.
In [12] we have introduced three different forms for the ultradiscrete Painlevé I equations
starting from the QRT mapping

xn+1xn−1 = a
1 + xn

xσ
n

σ = 0, 1, 2 (2.1)

and considering its nonautonomous form. In order to illustrate the singularity analysis
approach we shall limit ourselves to the autonomous case and moreover take σ = 2.
Ultradiscretizing (2.1) (putting x = eX/δ, a = eA/δ and taking δ → 0) we find

Xn+1 + Xn−1 = A + max(0, Xn) − 2Xn. (2.2)



F728 Fast Track Communication

The singularity corresponds to the discontinuity induced by the term max(0, Xn) when the
value of Xn crosses zero. We shall thus examine the behaviour of a singularity appearing at,
say, n = 1 where X1 = ε, while X0 is regular and look at the propagation of this singularity
both forwards and backwards. In what follows, we introduce the notation µ ≡ max(ε, 0) and
the presence of µ indicates that the value of X is singular. Below we present only the results
corresponding to A > 0, those corresponding to A < 0 leading to similar conclusions. First
we examine the case X0 < 0 and |X0| < A where one can see a regular zone between X−3

and X1 and a singular pattern from X2 on as well as until X−4.

...

X−13 = X−7 − 2X−5

X−12 = X−6 − 2X−5

X−11 = X−5

X−10 = X−7 − X−5

X−9 = X−6 − X−5

X−8 = X−5

X−7 = A + ε

X−6 = −X0 − 2ε + µ

X−5 = X0 + ε − µ

X−4 = A − X0 − ε + µ

X−3 = −ε

X−2 = X0 + ε

X−1 = A − 2X0 − ε

X0

X1 = ε

X2 = A − X0 − 2ε + µ

X3 = X0 + ε − µ

X4 = −X0 + µ

X5 = A − ε

X6 = X3

X7 = X4 − X3

X8 = X5 + X3

X9 = X3

X10 = X4 − 2X3

X11 = X5 + 2X3

...

This is a weakly confined case, in the sense that a (small) regular region exists surrounded
by singular values extending all the way to infinity in both directions. As we explained
already such a behaviour is deemed compatible with integrability. The cases 0 < X0 < A

and X0 < −A lead to similar, weakly confined, patterns. The last case is X0 > A where the
solution is regular until X1 then singular, confined, between X2 and X4 and regular from X5

on.



Fast Track Communication F729

...

X−3 = A − ε

X−2 = X0 − A + 2ε

X−1 = −X0 + A − ε

X0 = X0

X1 = ε

X2 = A − X0 − 2ε + µ

X3 = 2X0 − A + 3ε − 2µ

X4 = A − X0 − ε + µ

X5 = −ε

X6 = X0 + 2ε

...

Thus, in all cases we have either a confined singularity (a central singular zone with
regular behaviour outside) or a weakly confined singularity (a central regular zone with
singular behaviour outside). Both behaviours are deemed compatible with integrability. The
two points which we consider important in this analysis are that (a) one must study all possible
sectors of initial conditions and/or parameters and (b) one must consider the possibility of
weakly confined solutions.

3. Nonintegrable systems with confined singularities and integrable systems with
unconfined singularities

As we explained in the introduction there exist discrete systems which while being
nonintegrable still possess confined singularities. This discovery has as a consequence that
singularity confinement alone cannot be used as a discrete integrability detector. As we shall
show now the same problem appears in an ultradiscrete setting. In [13] we obtained a mapping
which did pass the confinement test while having a positive algebraic entropy

xn+1 = xn−1

(
xn +

1

xn

)
. (3.1)

The main advantage of this mapping over the examples of [8] is that it is multiplicative and
by choosing the appropriate initial data one can restrict the solution to positive values. In that
case the ultradiscretization of (3.1) is straightforward. We find

Xn+1 = Xn−1 + |Xn| (3.2)

where we have preferred to introduce the absolute value of X instead of its equivalent
max(X, 0) + max(−X, 0). We shall examine the behaviour of a singularity appearing at,
say, n = 1 where X1 = ε, while X0 is regular. We again use the identity µ ≡ max(ε, 0) =
(|ε| + ε)/2 and distinguish two different sectors X0 < 0 and X0 > 0. In the first case
(X0 < 0) we find the sequence

...

X−3 = 3X0

X−2 = 2X0 − ε

X−1 = X0 + ε
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X0

X1 = ε

X2 = X0 − ε + 2µ

X3 = −X0 + 2ε − 2µ

X4 = ε

X5 = −X0 + ε

...

We can see readily that the singularity, indicated by the presence of µ, is confined (to X2

and X3 only). Turning to the case X0 > 0 we find the sequence

...

X−4 = −X0 + 2µ + ε

X−3 = −X0 + 2µ

X−2 = ε

X−1 = −X0 + ε

X0

X1 = ε

X2 = X0 + 2µ − ε

X3 = −X0 + 2µ

X4 = 2X0 + 4µ − ε

...

In this case, we are in the presence of a weakly confined solution: a regular part
around n = 0 is surrounded by unconfined singularities both for large positive and large
negative n’s. Thus, the ultradiscrete mapping (3.2) has confined singularities and is not
integrable. (A stronger indication concerning this nonintegrability, based on growth properties,
rather than the analogy with the discrete case, will be presented in section 5.) In this
sense, system (3.2) is an ultradiscrete analogue of the equation discovered by Hietarinta and
Viallet [8].

The converse situation, of a mapping which, while integrable, does not possess confined
singularities does also exist. As expected an example is to be sought among linearizable
systems. In [13] we discovered the ‘multiplicative’ linearizable mapping

xn+1

xn−1
= a

xn + a

xn + 1
. (3.3)

It is straightforward to check that the parameter a can be always taken larger than unity.
(Indeed it suffices to reverse the direction of the evolution in which case a goes to 1/a.) We
can now ultradiscretize (3.3) to

Xn+1 = Xn−1 + A + max(Xn,A) − max(Xn, 0) (3.4)

where A > 0. The complete description of the solution would require examining several
sectors which exist but in order to show that there exist unconfined singularities it suffices to
exhibit such a situation in one sector. It turns out that the case where X0 has a large negative
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value is one leading to unconfined singularities:

...

X−4 = −X0 − 4A

X−3 = −4A + ε

X−2 = X0 − 2A

X−1 = −2A + ε

X0

X1 = ε

X2 = X0 + 2A − µ

X3 = 2A + ε

X4 = X0 + 3A − µ

X5 = 4A + ε

X6 = X0 + 4A − µ

X7 = 6A + ε

...

We remark readily that while for negative indices the solution is regular, a singularity,
mediated by µ, appears for positive n’s and is never confined. In section 5, we will analyse
mapping (3.4) from the point of view of the growth of the solutions.

Thus in perfect parallel to the discrete situation there exist ultradiscrete systems where
despite the nonintegrable character we have confined singularities while for ultradiscrete
systems obtained from linearizable mappings the singularities are not confined.

4. A family of integrable mappings and their ultradiscrete counterparts

In this section, we shall pursue the study of the singularities of ultradiscrete systems which
come as limits of mappings of the QRT family [14] and discuss their special properties. In
particular, we shall examine a mapping of the form

(xn+1xn − 1)(xnxn−1 − 1) = x4
n + ax2

n + 1

(1 + xn/b)σ
σ = 0, 1, 2. (4.1)

Mapping (4.1) is a special subcase of the autonomous limit of q-discrete Painlevé V. When
σ = 0 the mapping was shown in [15] to be linearizable. All three cases belong to the QRT
family and do possess a conserved quantity. We introduce yn = xn+1xn − 1 and (with obvious
notations) we obtain the ultradiscrete form of (4.1)

Xn+1 = −Xn + max(Yn, 0)

Yn = −Yn−1 + max(4Xn, 2Xn + A, 0) − σ max(Xn − B, 0).
(4.2)

Let us concentrate first on the σ = 0 case. The singularity corresponds here to the value
of Y crossing 0. We thus put Y0 = ε and iterate (4.2) starting from X0 both backwards and
forwards. We examine the branch 0 < X0 < A/2. This is the sequence we find for n < 0:

Xn = X0 + n(A − ε) Yn = Xn + Xn+1. (4.3)

At n = 0 we have by definition X0 and Y0 = ε. At n = 1 we find a singular value

X1 = −X0 + µ (4.4)
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and iterating for positive n we obtain

Xn+1 = X1 + n(A − ε) Yn = Xn + Xn+1. (4.5)

Since Xn+1 contains X1, the singularity which appeared at n = 1 propagates ad infinitum. On
the other hand, since (4.1) with σ = 0 is a member of the QRT family it does have an invariant:

K = x2
n + x2

n−1 + a

xnxn−1 − 1
. (4.6)

Ultradiscretizing (4.6) is straightforward

K = max(4X, 2X + A, 2 max(Y, 0)) − 2X − Y . (4.7)

We can check that (4.7) is indeed conserved by (4.2) and at no point does the singularity hinder
this conservation.

Thus, we are here in the presence of an integrable mapping with unconfined singularities.
This counterexample to the integrability criterion of [10] is even more serious than the examples
of section 3 since the mapping here possesses an explicit invariant. It is thus natural to wonder
what does happen in the remaining cases of (4.2), σ = 1 and 2. Presenting exhaustive results,
as in the case of section 2, would be prohibitively long. Below we present a few typical
numerical examples. We start with the case σ = 2, take parameters A = 100 and B = 11,
and initial condition X0 = 7. We obtain the sequence:

...

X−3 = −15 + ε − µ

Y−3 = ε

X−2 = 15

Y−2 = 122

X−1 = 107

Y−1 = 114

X0 = X0

Y0 = ε

X1 = −7 + µ

Y1 = 86 − ε + 2µ

X2 = 93 − ε + µ

Y2 = 122 − ε

X3 = 29 − ε + µ

Y3 = ε

X4 = −29 + 2µ

Y4 = 42 + 3ε − 4µ

...

We remark that this is a weakly confined singularity. A regular pattern exists between Y−3

and Y0 and the singularity extends all the way to ±∞ on the outside. What is more interesting
is that the value of Y comes backs to zero, up to a quantity of O(ε), repeatedly albeit not in
a periodic way. As a matter of fact the values of n for which Y is of order ε do show some
regularity: . . . , −26, −22, −19, −16, −13, −10, −6, −3, 0, 3, 7, 10, 13, 16, 19, 23, 26, . . . .
We remark that the interval between two successive near-zeros is either 3 or 4 but as far as
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we can tell there is no particular regularity in the succession of these two numbers. Similar
results can be obtained in the σ = 1 case. Again we find a weakly confined singularity and the
near-zeros of Y appear at values . . . , −34, −29, −25, −21, −17, −13, −8, −4, 0, 4, 9, 13, 17,
21, 25, 30, 34, . . . . By studying the variation of the (mean) length of the intervals between two
successive near-zeros of Y, which, we point out again here, also give the length of the regular
zone, we arrive at the following conclusion. For fixed (appropriate) values of X0 and A and
increasing values of B, with 2B/A integer, the length is exactly 2B/A + 3 for σ = 2 and
2B/A + 4 for σ = 1. If Y0 takes exactly the value 0 then the solution is strictly periodic. If
2B/A is not integer then these quantities give the mean length of the interval. We can now
see what is happening in the σ = 0 case. We can obtain this case by starting from σ = 1 or 2
and take B → ∞. Thus at the limit the length of the regular zone becomes infinite and we go
from a situation of weakly confined singularities to one of an unconfined singularity.

At this point one can wonder what is happening in the case where the mapping is not
integrable. We take (4.2) with σ = 3 and choose the same parameters as for the case analysed
just above, namely A = 100, B = 11 with initial conditions X0 = 7 and Y0 going through
zero. Iterating the mapping we find that the solution does not recur to O(ε) although it does
repeatedly cross zero to change sign. So for negative n the solution is regular while for positive
values of n the singularity continues indefinitely. Thus in this case we have unsurprisingly an
unconfined singularity.

In our analysis above we have presented the ‘interesting’ singularity patterns. There also
exist ranges of parameters in combination with the initial value X0 for which the solution has
strictly confined singularities. Their study does not bring any new element: it suffices that one
unconfined singularity pattern exist for confinement to be violated.

5. Growth properties of ultradiscrete systems

As we have seen in the previous sections, the situation concerning the integrability criterion
of [10] is far from clear. Counterexamples exist both as to its sufficient and as to its necessary
character. This does not mean that the criterion is not useful. As was shown by Joshi and
Lafortune there exist many instances where the criterion can be put to use and successfully
predict integrable deautonomizations. Still, because of the counterexamples, one is tempted
to look for auxiliary or complementary criteria. Since in the discrete case growth arguments
turned out to be crucial for integrability it makes sense to try to adapt these arguments to the
case of ultradiscrete systems.

Clearly, the complexity argument used in the case of discrete systems (and its
implementation through the algebraic entropy techniques) cannot be transposed as such to
the ultradiscrete case. Still the growth of the values of the variable can be of interest as we
shall see in what follows.

We start with the integrable ultradiscrete system (2.2) and iterate it backwards and forwards
for parameter A = 7 and initial values X0 = −100 and X1 = 0. We find the following
sequence of values: . . . , −100, 107, 0, −100, 207, −100, 0, 107, −100, 100, 7, −100, 200,
−93, −7, 114, −100, 193, −86, −14, 121, −100, 86, 21, . . . . We remark that the solution
does not grow but oscillates around zero. As a matter of fact the absolute value of the solution
never exceeds the value 2|X0| + |A|. Similar results can be obtained for other values of the
parameter and initial conditions. Another integrable ultradiscrete system with an explicit
conserved quantity is (4.2). In section 4, we have given numerical values of the iterates of
the case σ = 2, with parameters A = 100, B = 11 and initial condition X0 = 7. Again
the solution is not growing but bouncing between values which in this case never exceed
2B + A.
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It may turn out that this property of bounded, bouncing solution is characteristic of a
certain class of integrable ultradiscrete systems. Clearly, more detailed studies are needed
before one can make a more affirmative statement. What is clear at this stage is that not all
integrable ultradiscrete systems do have such solutions. Analysing the growth of (4.2) with
σ = 0 (which in the discrete case is not just QRT integrable but in fact linearizable) we find
the sequence of values, for A = 100 and X0 = 7, Y0 = 0. We have for X: . . . , 207, 107, 7, −7,
93, 193, 293, . . . and values that grow linearly by steps of 100 away from zero in both positive
and negative directions. Similarly for Y we find . . . , 314, 114, 0, 86, 286, . . . and linear growth
in steps of 200 away from zero in both directions. In order to investigate whether this linear
growth is a property of ultradiscrete systems coming from linearizable mappings we analyse
the solutions of (3.4), taking A = 10, X0 = 0 and X1 = 7. We find the sequence . . . −60,
−53, −40, −33, −20, −16, 0, 7, 13, 17, 23, 27, 33, 37, . . . . Again we have a linear growth
of the solution. For negative n the solution is increasing with alternating steps of 7 and 13
while for positive n we have alternating steps of 4 and 6. Another example can be given by
the mapping

Xn+1 = −Xn−1 + Xn + max(Xn, 0) (5.1)

which comes from the linearizable discrete system xn+1xn−1 = xn(xn + 1). Again starting
from initial conditions X0 = 0 and X1 = 1 we find Xn = n, obviously a linear growth.

While integrable mappings have moderate growth nonintegrable ones like (3.2) may grow
much faster. By inspection we conclude that the solutions of (3.2) form a Fibonacci sequence
and thus grow exponentially fast. On the other hand, exponential growth is not the only
possible one. For instance if we consider the ultradiscrete analogue of (2.1) with σ = −1,
which is not integrable, we find that the growth of the solutions is quadratic. What is making
the situation even more complicated is for (4.2) with σ = 3, which is clearly a nonintegrable
case, we find a bounded, bouncing solution.

In view of the above here are the (few) conclusions one can draw with respect to growth
properties of ultradiscrete systems. If one finds an exponential growth of the values of the
iterates this is an indication of nonintegrability, while a linear growth indicates linearizability.
However one must bear in mind the fact that even in these cases a slower growth may be
possible. Thus, the growth properties for ultradiscrete systems can be of some assistance in
the detection of integrability but they do not constitute a powerful tool as in the discrete case.

6. Conclusion

In this paper, we have investigated an integrability criterion for ultradiscrete systems introduced
by Joshi and Lafortune. They based their criterion in the disappearance of discontinuities
induced by terms like max(X, 0) when X crosses zero. Adopting the terminology used
for discrete systems this discontinuity is dubbed a singularity and its disappearance is the
equivalent of the confinement of the singularity.

A perfect criterion of integrability would in theory be both necessary and sufficient.
However no real-life integrability criterion meets these stringent requirements. This has
also to do with the loose definition of ‘integrability’ which is some cases is used in lieu of
‘linearizability’ or even ‘solvability’. So, expectedly, it turns out that the criterion proposed
by Joshi and Lafortune while being efficient in many instances is not perfectly failsafe. As we
have shown here there exist ultradiscrete systems with confined singularities and which are
nonintegrable. Conversely some systems integrable through linearization do not have confined
singularities, in perfect parallel to the discrete situation. What is more worrisome here is that
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there exists at least one example of a linearizable system which possesses an explicit invariant
and still has unconfined singularities.

We have also looked at the growth properties of the iterates of mappings in order to
complement the singularity analysis. The situation is not as clear as in the discrete case. While
exponential growth is an indication of nonintegrability there exist nonintegrable ultradiscrete
systems with growth less than exponential. As usual linearizable systems are a class on their
own, with linear growth of the values signalling linearizability.

Thus, the answer the question of the title of this paper is a qualified ‘yes’ but exceptions do
exist, just as in the case of integrable mappings which do not always possess the confinement
(discrete Painlevé) property.
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